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Note 

A Method for the Solution of a 
Class of Singular Volterra 

Integro-differential Equations 

In this note we describe a procedure which we have found simple to implement, 
accurate, and ‘efficient for the numerical solution of singular Volterra integro- 
differential equations of the form 

2 = F(x, 1, t) + G(x, i, t) j-1 (t - s) -n i(s) ds, 
(1) 

x(0) = a, i(O)=& O<t<T, 

where a < 1 and dots denote differentiation. The functions F and G are given and to a 
large extent arbitrary. Our procedure is particularly efficient when the equation is to 
be solved over a long interval spanning many orders of magnitude of the variable t. 
The method and general approach are not restricted to (1) but are readily extendable 
to other integro-differential equations and also to integral equations. 

A very useful feature of our method is the fact that locally, for each C, Eq. (1) is 
approximated by an ordinary differential equation which can be solved by a 
marching method. As the integration proceeds the time step is adjusted according to 
the local magnitude of the derivatives with a very beneficial effect on accuracy and 
efficiency. In this way the problem of the preselection of a subdivision of the interval 
[0, T] is completely avoided. 

Equations of the type (1) arise in many areas of physics and engineering, typically 
in phenomena in which the time evolution of the dynamical variable x is governed by 
diffusive processes depending on x itself. Well-known examples are the motion of a 
plate in a viscous fluid under the action of external forces [ 11, problems of heat 
transfer [2], and surface waves [3, 41. The present study was motivated by a problem 
of vapor bubble growth in a superheated liquid. Details of this application can be 
found in [5]. 

Under suitable Lipschitz conditions on the functions F and G in (l), it can be 
shown by an immediate extension of the methods of [6, 71 that Eq. (1) has a unique 
solution. We shall assume that these conditions are met in the following. 

Equations similar to (l), but of first order in the derivative and with x in place of i 
in the integral, have been studied extensively [g-12]. Second-order equations (or, 
equivalently, first-order systems) have received very little attention, an exception 
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being our previous study [ 131. Numerical methods for integral equations with the 
same type of singularity appearing in (1) have also been given [14-161. 

To obtain the solution of (1) over a long interval we separate the integral into two 
parts, 

(2) 

where 

I, = i ” (t - s) --(I i(s) ds, 
0 

’ I, = 
i 

(t - s)-” i(s) ds. 
kl 

The point C, is chosen such that to/t is small in a suitable sense which will be 
apparent from the following developments. The characteristic feature of our method is 
the treatment of I,. Let 

rl=2=&1. 
0 

Then the integral I, is transformed to 

I,= [f(t-to)]‘- c1 (1 -q)-“i[t,+$(l +q)(t-fo)]dv. 
J-1 

It is well known that for a definite integral the relation 

dx = 5 CK.mK) 
K=l 

(3) 

(4) 

(where a <x, < x2 < a-. < x, < b and w is a given weight function) holds exactly if 
f(x) is a polynomial of degree Q (2N - 1) and the points xk are chosen as the zeros 
of the Nth member of the family of polynomials P, orthogonal in the sense that 

s b 

4x1 P,(x) P,(x) dx UC 4,. (5) 
a 

The constants ck are referred to as Christoffel numbers and the procedure is known as 
Gaussian integration [ 17-191. In particular, the Jacobi polynomials Pirr*“) satisfy (5) 
with w(x) = (1 -x)” (1 + x)“. Equation (3) is a particular case corresponding to 
p=--a, v=o. 

Unfortunately, i in Eq. (3) is, in general, not known at the required zeros of 
Pkayo). For the computation of this quantity, a third-degree osculating (or Hermite) 
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interpolation based on the values of x and A! at the computed points is used [ 13). 
Specifically, if qK is any one of the zeros of PN, sK = t, + j(1 + qK)(f - to), and 
ti9 ti+ 1 are consecutive points at which ii-, 2 have been computed and such that ti < 
s, -C ti+l, we set 

i.(sK) N i(ti) IyiCsK) + i(ti+ 1) Wit ICsK) 

+ n(ti) $itsK) + a(ti t 1) $i t lCsK)* (6) 

In this equation 

v,(s) = ( 1 - 2 t ,“-::,)(f~t:$ _ t 
(i(S)=(S-ti) (ST:l+‘)*, 

i it1 

(74 

and Wi+, , #r + i can be obtained by interchanging the indices i and i + 1. 
Now suppose that the integro-differential equation (1) has been solved up to t = t,. 

To obtain the value of the solution at tnt i > t,, approximate (1) by an ordinary 
differential equation in the neighborhood of t, as follows. 

If a sufficiently large value of N is used, the last (or last few) zeros will in general 
be such that the corresponding value of s is greater than t,. Let s,,, be the last point 
such that sy < t,, and let s,, i ,..., sN be the remaining points at which i is required to 
compute the integral. Then we write 

CL [W”) W”W + 4t) W(%) 
K=l L=M+I 

+ %J 4”W + w 4WI (8) 

In this equation i(sK) is to be computed from (6), w,, and ), are given by (7) with t, 
and t i place of t,,tl+l, and w, 4 are again given by (7) with t, t, in place of ti, t,, , , 
respectively. Notice that the values of i and 2 appearing in the second term in (8) do 
not depend on the summation index so that we may write 

I, = J + A(t) i(t) + l?(t) Z(t), (9) 

where 

J= 5 C~i(S~)+i(fn) 5 CLWn(SL)+z(fn) 2 CLhl(SL), 
K=l L=Mtl L=M+I 

A(t)= i B(t) = 5 

(10) 

CL VW, CL WL)’ 
L=M-lI L=M+ 1 
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Upon substitution into the original equation (1) we then obtain the following 
differential approximation to the integro-differential equation: 

(1 -GB)X=F+ G(Z, +J+Az?). (11) 

At this point any method suitable for the numerical integration of ordinary 
differential equations can be used to advance the solution beyond t,. Notice that a 
variable step size can be used, which is particularly important if the solution over 
long intervals is required. Another interesting feature of (11) is the implicit (in prin- 
ciple, although explicit computationally) way in which the contribution of Z(t) to the 
integral is treated. As already remarked, this feature arises only if N is sufficiently 
large. For small N it may happen that S, < t,, and consequently A = B = 0. The 
method, however, has also been found to work well in this case. 

A final detail concerns the computation of the term I,. Since to/t is assumed small, 
this term can be computed approximately. The approximation 

p-a 

I1 = (I - a)(2 - a) I[ 
1-(2-a)~++(2-a)(l-o)(~)2]l(l,) 

+(2-c+(to) [1-(1-a)+ t 1 (2 - a;;1 - a) [x(t,) -x(O)] 1 
_ 0 -to)‘-= 

l-a [ 
a(to) + t-to *. 

,x(r,)] t 0 (p)‘x”‘(t,) 

obtained by repeated integration by parts performs very satisfactorily for to/t - 0.1. 
Notice that in this formula only values at t = 0 and t = to are required. Therefore, all 
intermediate values can be discarded with considerable saving of storage. For a 
sufficiently small interval of integration one can take to = 0 and, consequently, I, = 0. 

As with many other methods for these types of problems (see, e.g., [8, 15]), to 
start the computation our procedure requires that the value of the solution be known 
at the first few points. The method of [ 131 can be used for this purpose, although 
frequently asymptotic approximations or simplified equations are available for t 
small. 

To obtain a quantitative idea of the performance of the method, consider the 
integro-differential equation 

3x2+&* - (21+ I)!! Xt-3/* ’ 
(21- 2)!! I (t - s)-“* i(s) ds = 0, o 

x(0) = 0, i(0) = 0 

where 1 is a positive integer. The exact solution is x(t) = t’+‘/(Z + 1). The 
computations were performed with N = 15. The initial time step was taken as 0.1, 
and the initial values were computed from the analytic solution up to t = 1. The point 
to was chosen as the largest value oft for which the solution had been computed such 
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that t,,/t < 0.1. Equation (11) was solved by a variable-step fourth-order Runge- 
Kutta method. Values of x and 1 at time t + h were computed in two different ways, 
first with ,a single step of length h and, second, with two successive steps of length 
h/2. Denoting the values obtained in the two ways by indices A and B, compute the 
quantity E = max(]x,/x, - 11, ]iA/iB - 11). By (repeatedly, if necessary) halving the 
step size, E was never allowed to exceed 10P5. The step size, however, was doubled if 
E became less than 10e6. All the computations were performed in single precision 
arithmetic on an IBM 3033 computer. In Table I the computed and analytic results 
are compared and information on step size and number of steps is provided. The 
integration was carried on until the overflow limit of the computer was reached. 
Notice that the relative error gets smaller with increasing 1, a trend opposite to what 
might be expected. Actually, this is an artifact of our step size control. The larger Z, 
the larger the derivatives and consequently the smaller the step size. This can be 
verified directly by comparing the number of steps and the At in Table I. 

Extensions of these ideas to other singular (and nonsingular) kernels are trivial. 
For instance, if (t -s)-” in (1) is replaced b [s(t - s)] ‘j2, [s(t - s)] -1’2, instead of 
the Jacobi polynomials, Chebyshev polynomials of first or second kind should be 
used [ 181. Still other polynomials are available for kernels of the type sk and log(s/t) 
[ 181. More complex integrands of the form f(x, 1, s) in place of i(s) can also be 
treated in a similar way except perhaps for the approximate evaluation of I,. 

An important characteristic of the present method is the osculating approximation 
(6) of ,L This feature leads to the appearance of 2(‘(t) in the approximation (8) to I,. If 
the same technique is applied to the first-order equation 

i = P,(x, lj + G,(x, t) I,’ (t - s)-” x(s) ds, (12) 

I, will contain a term i(t) and a first-order ordinary differential equation approx- 
imation analogous to (11) is obtained for (12). The same procedure can also be used 
for the integral equation 

x = F2(x, t) + G,(x, t) I,’ (t - s)-= x(s) ds. (13) 

If x(s) is approximated in terms of x and 5 again a first-order ordinary differential 
equation is obtained. 

This same approach has been used very successfully in [5] to solve a system of the 
form 

f = j-(x, i, y) 

y = i,’ (t - s) - 1’2 $ g(x, y) ds 

describing spherical bubble growth in an unbounded liquid. The use of the osculating 
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approximation (6) on the term dg/ds causes the appearance of j; and an approximate 
second-order ordinary differential equation for y is again obtained. Other 
generalizations of this method can be found in [ 131. 
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